An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach
نویسندگان
چکیده
In this paper, we present an effective and efficient diagnosis system using fuzzy k-nearest neighbor (FKNN) for Parkinson’s disease (PD) diagnosis. The proposed FKNN-based system is compared with the support vector machines (SVM) based approaches. In order to further improve the diagnosis accuracy for detection of PD, the principle component analysis was employed to construct the most discriminative new feature sets on which the optimal FKNN model was constructed. The effectiveness of the proposed system has been rigorously estimated on a PD data set in terms of classification accuracy, sensitivity, specificity and the area under the receiver operating characteristic (ROC) curve (AUC). Experimental results have demonstrated that the FKNN-based system greatly outperforms SVM-based approaches and other methods in the literature. The best classification accuracy (96.07%) obtained by the FKNNbased system using a 10-fold cross validation method can ensure a reliable diagnostic model for detection of PD. Promisingly, the proposed system might serve as a new candidate of powerful tools for diagnosing PD with excellent performance. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملA Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملEffective detection of Parkinson's disease using an adaptive fuzzy k-nearest neighbor approach
In this paper, we present an effective and efficient diagnosis system based on particle swarm optimization (PSO) enhanced fuzzy k-nearest neighbor (FKNN) for Parkinson’s disease (PD) diagnosis. In the proposed system, named PSO–FKNN, both the continuous version and binary version of PSO were used to perform the parameter optimization and feature selection simultaneously. On the one hand, the ne...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملFUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2013